Novel markers for OLM interneurons in the hippocampus

نویسندگان

  • Sanja Mikulovic
  • C. Ernesto Restrepo
  • Markus M. Hilscher
  • Klas Kullander
  • Richardson N. Leão
چکیده

Oriens-lacunosum moleculare (OLM) cells are a major subclass of hippocampal interneurons involved in controlling synaptic plasticity in Shaffer collateral synapses (Leão et al., 2012) and electrogenesis in pyramidal cell (PC) dendrites (Lovett-Barron et al., 2012). Their firing phase is locked with theta oscillations, which imply a role for these cells in theta rhythmogenesis (Klausberger and Somogyi, 2008; Forro et al., 2015). OLM interneurons also appear to be key in the pathophysiology of epilepsy (Dugladze et al., 2007) and is the most vulnerable interneuron population in models of epilepsy (Dinocourt et al., 2003). Somatostatin has been frequently used as a molecular marker for identification of OLM cells (Forro et al., 2015). Two recent studies suggest that the OLM cell population is heterogeneous. First, the expression of cholinergic receptor, nicotinic, alpha polypeptide 2 (Chrna2) seems to be restricted to OLM interneurons neurons of CA1 (Leão et al., 2012). Second, a subset of OLM interneurons that expresses the 5HT3a receptor is derived from the caudal ganglionic eminence and do not entrain to gamma oscillations. In contrast, OLM interneurons derived from the medial ganglionic eminence partially phase lock to in vitro gamma oscillations and do not express 5HT3a receptors (Chittajallu et al., 2013). Further, other dendritic targeting interneurons in the hippocampus also express somatostatin (Lovett-Barron et al., 2014). Hence, functional studies of OLM cell in hippocampal function have been targeting a relatively heterogenous cell population. Moreover, one of the most widely used somatostatin-Cre mouse lines, the Som-Ires-cre line (Taniguchi et al., 2011), shows rather unspecific Cre activity in the neocortex, targeting both dendritic and somatic projecting interneurons (Hu et al., 2013). While no study have yet systematically characterized Cre activity in the hippocampus of this somatostatin-Cre mouse line, our own observations indicate a heterogenous activity pattern also in the hippocampus. We crossed somatostatin-Cre males with females of the Ai14 reporter line, to generate double transgenic progeny in which somatostatin positive cells express td-tomato (Figure 1A). Cre-driven td-tomato expression in somatostatin-Cre mice was not restricted to OLM cells. We found several PCs labeled and observed td-tomato+ cell bodies across all CA1 layers as well as cells labeled in the dentate gyrus and CA3. Further, the firing properties of CA1 neurons expressing td-tomato in somatostatin-Cre mice were heterogeneous (Figure 1A). Td-tomato positive recorded cells were classified into regular-(RS), slow-(SS), and fast-spiking (FS) neurons, using clustering method as described previously (Hu et al., 2013). The proportion of …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus

TRPV1 is an ion channel activated by heat and pungent agents including capsaicin, and has been extensively studied in nociception of sensory neurons. However, the location and function of TRPV1 in the hippocampus is debated. We found that TRPV1 is expressed in oriens-lacunosum-moleculare (OLM) interneurons in the hippocampus, and promotes excitatory innervation. TRPV1 knockout mice have reduced...

متن کامل

Electrophysiological and Morphological Characterization of Chrna2 Cells in the Subiculum and CA1 of the Hippocampus: An Optogenetic Investigation

The nicotinic acetylcholine receptor alpha2 subunit (Chrna2) is a specific marker for oriens lacunosum-moleculare (OLM) interneurons in the dorsal CA1 region of the hippocampus. It was recently shown using a Chrna2-cre mice line that OLM interneurons can modulate entorhinal cortex and CA3 inputs and may therefore have an important role in gating, encoding, and recall of memory. In this study, w...

متن کامل

Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens-lacunosum-moleculare (OLM) interneurons and bistratified cells (BiCs), make their contribution to network rhythms difficult to...

متن کامل

Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuitry.

In cortical networks, different types of inhibitory interneurons control the activity of glutamatergic principal cells and GABAergic interneurons. Principal neurons represent the major postsynaptic target of most interneurons; however, a population of interneurons that is dedicated to the selective innervation of GABAergic cells exists in the CA1 area of the hippocampus. The physiological prope...

متن کامل

Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model.

Acetylcholine regulates memory encoding and retrieval by inducing the hippocampus to switch between pattern separation and pattern completion modes. However, both processes can introduce significant variations in the level of network activity and potentially cause a seizure-like spread of excitation. Thus, mechanisms that keep network excitation within certain bounds are necessary to prevent su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015